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Introduction

Investment practitioners rely on various risk measures - Tracking Error Volatility (TEV), Value-at-Risk (VaR), Expected
Shortfall (ES) - and their decomposition into contributions from securities and risk factors to guide investment decisions. In
this note we analyze decomposition of portfolio risk into marginal contributions (measuring individual component impact on
total risk), or additive components (the components that will sum to the total portfolio risk measure), each component
being associated with a single security, an investment sector, an asset class, or a risk factor. The key property underlying
this decomposition is positive homogeneity of the risk measure, a property that states that the risk of a portfolio scales in
proportion to the size of the portfolio. Taking this property into account, these risk measure decompositions are easily
computed under the assumption of joint normality of the component returns. In most of actual cases, however, the
assumption of normally distributed returns does not apply. Fat tailed distributions are rule rather than exception for
financial market factors and the inclusion of non-linear derivative instruments in the portfolio gives rise to distributional
asymmetries. Whenever these deviations from normality are expected to cause serious biases in VaR calculations, one
has to resort to either alternative distribution specifications or simulation methods. In this note we present the methodology
for estimating these metrics in the context of Monte Carlo simulations.

The marginal risk contributions and components associated with both Value at Risk and Expected Shortfall can be
represented as conditional expectations of component returns, conditioned on events in the tail of the loss distribution for
the full portfolio. The rarity of these tail events presents an obstacle to practical calculation of these conditional
expectations. Each contribution depends on the probability of a rare event (a large loss of a particular component)
conditional on an even rarer event (an extreme loss for the portfolio as a whole). This note describes methods and
techniques we use to address the practical difficulties of calculating these expectations.
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Risk measures, marginal risk contributions and risk measure components

The distribution of returns in a portfolio is typically summarized through a scalar measure of risk. Two of the most
commonly used risk measures are Value-at-Risk (VaR) and Expected Shortfall (ES). The VAR associated with probability
1 — a (eg, a = 1%) is the lower bound for the loss incurred by a portfolio with probability a:

VaRy : P(rp, < —VaR,) = « (1)

where 1, is the portfolio return. The corresponding expected shortfall is the conditional expectation
ES, =E[r,|r, < =V AR,] (2)
and can be intuitively interpreted as the average of all losses above a given quantile of the loss distribution.

Value-at-Risk is in more widespread use, but expected shortfall is coherent (in the sense of [1]) while VaR is not. VaR is
not in general subadditive, which means that the sum of the VaRs for two portfolios is not equal to the VaR for the
combined portfolio. In particular this means that the VaR of a portfolio cannot be decomposed as a sum of the standalone
VaRs of its components.

For the purpose of risk management it is not sufficient to just estimate a single measure of the portfolio risk as a whole.
For capital allocation, measurement of risk-adjusted performance, developing hedging strategies and in general
understanding the impact of different risk factors and component on portfolio risk it is useful to allocate the risk to elements
of the portfolio based on their marginal contribution to total risk. To see how the marginal contribution to VaR can be
calculated let us consider the return r,, of a portfolio that consists of n securities, each having return r;, with the weight of
the i!" security in the portfolio denoted as w;:

Tp = i: w;r; 3)
=1

We should note that from the point of view of risk factor model, the return of the portfolio can be similarly represented as a
weighted sum of the factor returns. Thus, equation (3) can be used to look at the portfolio risk decomposition by factor
returns, as well as by security returns.

The marginal contribution to portfolio VaR from component i, MV aR, ;, is the change in portfolio VaR resulting from a
marginal change in the i*component position :
VaR,,
4
B, (4)

This metric allows portfolio managers to find the components that can be used to significantly revise the overall risk of the
portfolio with the minimal change to capital allocation.

MVQROM‘ =

We can us the marginal contributions to VaR to define the additive VaR components that will sum to the total portfolio risk
as VaR, =), CVaR, ;. To do that we should note that VaR defines a quantile of the portfolio return distribution and, as
portfolio return, is a homogeneous function of component weights (meaning that multiplying all weights by the same
number leads to VaR scaling by that number). Thus, according to Euler homogeneous function theorem [2], VaR can be
decomposed as

n

OVaR,,
VaR, = zi:wi B, ()
This means that we can define an additive component of VaR in terms of the marginal contribution to VaR as
CVaRa; = wiMVaR,., (6)

It can be shown (see Appendix ) that the marginal contribution to portfolio VaR is the conditional expectation of the
component return, conditioned on rare values of the portfolio return VaR,:

OVaR,

MVaR,,; = = —E[ri|r, = —VaR,] (7)

Bwi
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When VaR is estimated using a linear normal model, calculating contribution to VaR is fast and easy - one just need to use
equation (4) and differentiate the parametric expression for VaR. But in case of Monte Carlo simulation contribution to VaR
has some severe problems - the sampling variability of the estimate is large and will not go down as we increase the
number of samples for the simulation. The problem is that the contribution to VaR from a given component depends on the
single return sample that happens to be the o'" return observation for the portfolio (the simulated VaR,,). The contribution
to VaR depends on that single return observation in such a way that the sampling variability does not change with the
number of trials in the simulation. Next section describes Monte Carlo techniques used to compute VaR, explains in more
details the problem with estimating VaR components and outlines the methodology used to overcome the problem (for
detailed theoretical treatment of the problem and analysis of solution methods see, for example, [3],[4], and [5]).

Monte Carlo estimates of VaR and marginal contributions to VaR

Estimation of the risk decomposition described by (4) and (6) by Monte Carlo is a two steps procedure. First, the
Value-at-Risk (and Expected Shortfall) is estimated, and then the risk contributions are computed using the value of VaR
from the first step in place of the true VaR in the conditional expectations (7).

To create Monte Carlo estimator for portfolio VaR we should first write the equation (11) for VaR through the confidence
level o as

—VaRs
a=Plx <-VaR,) = / fr(x)dz (8)

— 00

and note that this equation can be rewritten as an expectation of the indicator function defined as

oo 15
as
a= / I(x < =VaR,) fr(z)de = E.[Z(z < =VaR,)] (10)

The expectation representation can be used to compute VaR when we generate, using Monte Carlo method, a sample of
independent and identically distributed portfolio returns r;, i« = 1,..N. In this case the estimator for the expectation is:

N

o= NZ;I(” < —VaR,) (11)
and in this form it can be used to find VaR from a sorted list of sample returns given a value of «. Suppose we pick a value
of VaR equal to the n'" return in the sample VaR, = —r,. Then for every sample with i < n in the sorted list the indicator
function is equal one, and for every sample with i > n the indicator function is zero. Thus, the confidence level for that
value of VaR is

n

avan = 1 (12)

So we can just find the value n in the list such that £ is closest to the given value of o and use the sample —,, as an
estimate of VaR.
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When estimating VaR of a portfolio that consists of S securities we are generating K i.i.d. vectors of security returns
r;7 = (rii,r2,...,ms;) where r; is a single (i*") sample of a joint distribution of individual security returns ;. From these
vectors we compute K i.i.d. portfolio returns r;, = w’r;, and use these samples to estimate portfolio VaR.

An estimator for a conditional expectation (7) of the k" security return in this case will be

S i (rip = —VaRa)

Elrg|lr, = —VaR,| =
[rk|rp o SN T(ryy = —Vako)

(13)

Unfortunately, if we just generate a single sample of K values of r;, the sums in the estimator for conditional expectation
will only have a single non-zero term. In other words, we will have a single MC sample in the region of interest.

We can remedy this situation by generating a number of samples of K portfolio returns, such that we will have multiple
realizations of ;, = VaR,. This, however, is extremely inefficient. Instead, we can relax the condition in the expectation
(13) from

Tp = _VaR(x (14)

to
Irp + VaRs| < ¢ (15)
so that the estimator of the marginal contribution to VaR becomes:

iy reiZ(rip + VaRa| <)
SN I(rip + VaRa| < )
(here the symbol ~ indicates that this is a biased estimator for marginal contribution).

MVaRay, = —E[ry||ry + VaRa| < &] = — (16)

The size of the neighborhood ¢ will determine the number of active points in the estimator (16). We need to have a
reasonable number of points in the neighborhood of VaR to bring the variance of the estimator down, but at the same time
we have to restrict the width of the region to limit the variability of the portfolio return within the neighborhood.

Because the averaging region of formula (16) }rp + VaRa] < e is located in the tail of the portfolio returns distribution, the
median of the samples in the region will be less negative than the mean, and the weighted average of the conditional
mean returns will be less negative than the portfolio quantile return. In other words, the weighted sum of marginal
contribution estimators is expected to be less than the estimated portfolio VaR:

n
S wiMVaR,,; < VaR, (17)

To correct that we introduce the normalization factor w defined as

w = Va—R/a-\ (18)
Zn wiMVaRa}i

?

and define the adjusted estimator for marginal contribution to VaR as

MVaR,; = wMVaRa. (19)

The corresponding estimate for the CVaR follows from eq.(6). Due to the adjustment factor w the sum of the CVaRs
exactly equals the initially estimated overall portfolio VaR, as required by CVaR definition.

Introduction of the normalization factor w is very similar in nature to the method of control variates in Monte Carlo
estimations. The method relies on knowing the expectation of an auxiliary simulated random variable, called a control.
The known expectation is compared with the estimated expectation obtained by simulation. The observed discrepancy
between the two is then used to adjust estimates of other (unknown) quantities that are the primary focus of the simulation.
In our case the portfolio VaR is used as a control variate for component VaR estimators. The more detailed analysis of the
adjusted estimator and justification of the normalization procedure can be found in [4].
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Monte Carlo estimators of component risk in MAC model

For a portfolio of S securities we generate
K Monte Carlo samples (typically K = 5000) for each L -
of the [ factors. As a result we have a 3D matrix of &€ _
returns for each security, each factor, each sample. We QQ?( | ]

can visualize the matrix as having F' vertical slices, each B
slice is a matrix of S rows and K columns. Each row of
the slice matrix is the set of returns for one security/one PLLL eeeee e "KL
factor, obtained on K Monte Carlo samples.

That is, each row of each slice of the matrix is a
distribution of returns from one security/one factor. If we : :
add all vertical slices together, we will obtain the S x K TSI wve eee won TSl |
matrix, where each row will be a distribution of returns of
individual security. If we slice the 3D matrix horizontally,
instead of vertically, (imagine horizontal 2D matrices
stacked on top of each other), multiply each horizontal
slice by the appropriate security weight and add the
slices together, we will have F' x K matrix where each
row is the distribution of returns from individual factor.

S Securities
l

K Samples

Figure 1: Results of Monte Carlo sampling with K samples for MAC
on a portfolio of S securities

Each element of the 3D sample matrix r,;, is the return of the st security,from the f*" factor, for the k** Monte Carlo
sample. The portfolio return distribution sample ¥ can be computed as

s F
Ty = Z Z WsTsfk (20)
ik
We can write this sum in two ways. Either as a weighted sum of returns of the s security from all the factors

M
Tsk = D, Tsfk
f=1

s
P =Y wir (21)
s
Or as a sum of returns from the f*" factor from all the securities in portfolio TiE = Y, WsTsfk
s=1

F
TZ = Z’I‘fk (22)

f

Portfolio VaR estimator

To compute Monte Carlo estimator of the portfolio VaR we first use formula (20) to compute all K" samples r, from portfolio
return distribution. These samples are sorted and the estimator (11) is used to get the value of portfolio VaR for a given
probability o ( VaR,) and the index of the location of the estimator VaR,, in the vector of portfolio return samples. The
sorting order of the portfolio returns samples is stored - we will denote the sorted sample index k* to distinguish it from the
original index sample k. The obtained estimator for VaR,, and its location in the sorted vector of portfolio return samples
ki . g 18 then used for computing marginal contributions and components VaR in both security and factor spaces.
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Security contribution to VaR

To calculate security contributions to VaR we will use the formula (21) for portfolio distribution sample expressed through
the returns of individual securities. p
ri* = Z WsTsk+

where r,;« is the sum of returns of the s** security from all the factors for Monte Carlo sample k*. Note the usage of the k*
index - each security distribution sample vector r; = {rs;+,k* = 1,..., K} is sorted in the same order as the vector of
portfolio returns distribution.

To compute the estimator for marginal contribution to VaR from security s using equation (16) we first need to define the
averaging region boundary ¢. We typically pick the width of the averaging region in formula (16) corresponding to certain
percentage of the total Monte Carlo samples. For example, if we use K = 5000 Monte Carlo samples and define the width
of the averaging region as 5% that would correspond to 250 samples in the averaging region, or the value of ¢ = 125.
Having defined £ we compute each security s estimator for marginal contribution to VaR MV aR; as

k=k{,,p+e
Tsk*
o k=k}, —€
MVaRg, = —E(ry|r, = —VaR) = _% (23)
13

where 2¢ is the total number of sample points in the averaging region. We can then compute the normalization constant w
using equation (18) and obtain the adjusted estimator for marginal contribution to VaR from security s as

MVaRg, =w- MVaR,,, (24)
Finally, the contribution to VaR from a security s is computed as

CVaRs; = ws - MVaR, s (25)

Factor Contribution to VaR

Computation of the marginal contribution to VaR from a given risk model factor f is similar to computation of security
contribution. We start from the representation of the portfolio return distribution sample as a sum of factor returns (Eq.(22))

F
TZ* = Z T flex
7
(note again the usage of ordered portfolio sample index k*). The factor marginal contribution to VaR is then computed in
the same way as security contribution, but starting from the 3D Monte Carlo return matrix aggregated along the security

direction (vertical aggregation in the figure (1)). For each factor f the unadjusted estimator of the marginal contribution to
VaR is computed as

k=ky ,pte
Tfk*
— F=kYan—c
MVaRg = ——4—— (26)
IS}

The normalization coefficient w is again computed in the same way as for security contributions:

e Volla 27)

M _—

Z MVaRavf
f

And, finally, adjusted marginal factor contribution to VaR is computed as

MVaRy s =w-MVaR, s
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It is important to note that the normalization coefficients w computed using estimators for marginal security contributions,
or marginal factor contributions, are exactly the same (see Appendix()). This allows us to compute w only once, when first
set of marginal contributions is estimated, and also use the same value of w to adjust the individual security and factor
contribution estimates (see below).

Security and Factor contribution

The most granular decomposition has to be computed directly from the 3D Monte Carlo matrix. Effectively, this
decomposition is based on representation of the portfolio VaR as the sum of conditional expectation of individual security
returns for each individual factor

s F
VaR = — Z Wy Z E(rsflrp = —=VaR) (28)
s !

Analogous to the marginal security or factor contribution, we can compute the adjusted marginal contribution from
individual factor and individual security as

k:k‘;aR+€
Z Tsfk
k=k¥  —
MVaRy = —w—ei" (29)
2¢
This results in .S x F' matrix of marginal contributions
MVaRy; ... MVaRip
: : (30)
MVaRgy ... MVaRgp

By construction, the sum of all element in a row of the marginal contribution matrix is the estimator of the marginal security
contribution to portfolio VaR (from eq. (23)):

k=ki,,pt+e F k=k3{,,g+e
F Z Tsfk Z Tsk
k=k} —e f=1 k=k} —
Y MVaR, = —w—"0 ;f = —w V“; * = MVaR, (31)
13 g

F=1

At the same time (see eq. (26), the sum of all elements in a column of the contribution matrix is the estimator of the
marginal factor contribution to portfolio VaR:

F
> MVaR. = MVaRy (32)
f=1
Choice of € and numerical examples
This section
analyzes numerical estimates of risk measures @ ‘ VaR, ovar % ‘ ES. oms P %
for a sample portfo_llo (a Barclays Aggregate 01 479 0413 266 655 011 160
!ndex). The focus is on the analysis of the errors 95| 616 014 293 769 010 1.26
in Monte Carlo estimates of VaR and its components. 97 | 706 0.12 163 844 010 116
The errors in Monte Carlo estimators 99 | 861 0.13 155 | 992 013 129
arise due to statistical errors in numerical simulations )
of the random distributions. Monte Carlo estimators Table 1: Estimators and errors for VaR and ES of Barclays EUR Aggre-

are based on the weak law of large numbers, that gate Index for different confidence levels o

basically states that when the number of samples is
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increased towards infinity, the estimators tend towards the true values of estimated quantities. However, since in all
practical applications the estimators are based on a finite number of samples, they always have an uncertainty associated
with them. This uncertainty can be reduced by increasing the number of samples. In most cases the variance of the
estimator that reflects that uncertainty is inversely proportional to the number of Monte Carlo samples used to obtain the
estimator.

Monte

Carlo process itself can also provide an estimate

of the variance of the estimator. From the same
computation one can obtain both estimated result and
an objective measure of the statistical uncertainty in
the result. In our case, we use multiple Monte Carlo = 1% range
simulations of a portfolio VaR and its components 200 O 5% range
at different confidence levels with K = 5000

samples as described above. We run each simulation
ten times, and record the means and standard
deviations of estimated VaR and MVaR values.

We use this data to evaluate the adequacy of the
number of samples for our purposes and to establish
an acceptable averaging region ¢ for computing
marginal contributions to VaR that provide reasonable
balance between bias and variance of the estimators.

250

150

100 —

0.0 : . . 0.4
Relative Error o/
Table (1) shows the estimated Value-at-Risk
(VaR,) and Expected Shortfall (£'S,) values for
different confidence levels « computed for Barclays
EUR Aggregate Index. Also shown are Monte Carlo
standard deviations of the estimators o,z and ogg
and corresponding relative error for each estimator,
expressed as a percentage of the estimator itself. It is clear that with the employed number of samples (K = 5000) the
error of both risk measures never exceeds 3%.

Figure 2: Distributions of component VaR Monte Carlo errors for two
width of averaging regions - 1% (corresponding to 50 averaged points)
and 5% (corresponding to 250 averaged points)

The index we use for testing purposes contains around 4000 securities. We analyze performance of the Monte Carlo
algorithm by comparing the distributions of the errors of the components corresponding to each security obtained at
different values of the averaging region width parameter ¢ (eq. (16)). Some of the securities have negligible impact on
portfolio VaR, and the value of their corresponding components are very small. This components, if considered, will
contribute large relative errors to the distribution of errors even when Monte Carlo variance is small in absolute measure.
To avoid distorting the distribution of errors with this components we do not consider the components with the absolute
value less then CVaR, < 107°.

Figure (2) shows two such distribution for VVa Rg5 obtained at values

of ¢ corresponding to 1% and 5% of total number of samples. The Mean o
distribution of errors obtained with ¢ = 1% (green bars on the figure) has a | 1% \ 5% | 1% \ 5%
the mean of ;» = 0.12 and standard deviation of o = 0.08. In other words, =93 T 015 [ 0.07 | 0.11 | 0.05
most of the errors are lying below the value of 16% (1 + %). Increasing 95 | 012 | 0.06 | 0.08 | 0.04

the value of ¢ to 5% of the number of samples lead to significantly 97 | 01 | 004 | 008 | 003

narrower distribution of errors. Now the mean of the distribution is 008 | 005 | 0.06 | 0.04

at u = 6%, and the standard deviation is o = 4%, thus the majority of the

errors in this case are less than 8%. Moreover, close examination of the Table 2: Parameters of error distributions

distribution of absolute and relative errors shows that the relative errors
larger than 20% are observed only on very small CVaR values. In other words, only components with contributions that
are not significant for the purpose of portfolio risk analysis will have large relative estimation errors.

Finally, Table (2) shows the mean and standard deviation of the distribution of errors obtained with different values of
averaging region width parameter ¢ (1% and 5%) for different VaR threshold probabilities «. With the value of ¢ equal to
5% of the total number of samples, the center of the error distribution is located around 6%, while its width never exceed
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the value of 5%. Thus, the value of ¢ = 5% is sufficient to keep the errors of the VaR components within 10% range.

Conclusion

Decomposition of portfolio risk measures into components by security, asset class or factor, while relatively straightforward
under the assumption of normal return distributions, becomes complicated when the normality assumption does not hold.
The decomposition of risk measures requires computations of conditional expectations of component returns, conditioned
on rare tail events in portfolio return distribution. The rarity of the conditioning event is expressed in relatively large errors
of components estimates obtained using Monte Carlo methods. In this note we have presented the Monte Carlo
methodology for portfolio risk decomposition that limits the errors of component estimates to acceptable levels. The errors
can be further reduced by applying more sophisticated Monte Carlo techniques (like, for example, importance sampling)
for estimating conditional expectations of tail events. These techniques, however, are not directly applicable to the case of
high-dimensional risk factor model, such as MAC model, because they suffer from severe reduction of efficiency when
dimensionality of the model increases to several hundreds of factors or higher (see for example [6]). Application of such
techniques to risk decomposition problems in the framework of the MAC model is the subject of our current research.
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Marginal contribution to VaR as conditional expectation

Suppose we have a bivariate continuous random variable (X,Y") and its quantile ¢(«) defined as

P(X +€Y <q(a)) =«

We want to compute the derivative

dg(a)
de

Let's write the probability as integral over the distribution function

oo [ g—¢€y

PO+ <gl@) = [[ f@aasty= [ | [ seds| dy
r+ey<q —00 —00
Differentiating with respect to ¢ gives
0 dq
/ Ll - y} fla—ey,y)dy =0
€
leading to
p I yf(a—ey,y)dy
dfq:ﬂ; =E[V[X +e¥ =]
€

J Ja—ey.y)dy

Security and factor correction parameters

Let us compare the expressions for the security and factor contributions correction parameters:

VaR,

w =

M —
S wsMVaR, s

and
VaR,,

w =

M
Zf:MVaR%f

We can rewrite the equation for marginal security contributions (23) as

k=kj, g+ k=k{,,pt+e F
> Tsk~ > > Tsfk*
VaR. = Fan= =k, p—e =1
ws 2 2
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and the equation for factor contributions Eq (26) as

k=k{,,p+e k=ki,,rt+e S
Z T flx Z E WsTsfh*
]ma,f _ k=k{,,r—¢ _ k=k3, , p—e s=1
2e 2¢e

Using these two expressions we can rewrite the sums of the contributions over all securities and factors that are used in
the denominators of the formulas (33,34) for correction parameters:

S k=ki,pt+e F

S Z Z Z WsTs fE*
— s k=ki,, p—e f=1

> wMVaR,,, = :

- 2e

and
F k=ky.rte S
F Z Z Z WsTs f R+
— f k=k} g—es=1
> MVaR = :
7 ’ 2¢e

which shows that the sums are equal, and, therefore, the factor and security correction parameters are equal.
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